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Abstract
Marine protected areas (MPAs) are increasingly used as a tool in fisheries management. However, implementation

of an MPA violates common assumptions for fishery stock assessments that provide estimates of abundance and
fishing mortality for management. Thus, it is important to understand the effects of MPAs on estimates from stock
assessments. We conducted a simulation study to determine the effects of MPAs on accuracy of surplus production
model (SPM) stock assessments. We simulated the dynamics of a population that had part of its range in an MPA,
and we assessed the population with spatially aggregated and spatially explicit SPMs under a range of conditions,
including different MPA sizes (percentage of the total stock area), different rates of migration between MPA and
non-MPA regions, and scenarios with high and low observation error in the indices of abundance. We also considered
a scenario in which there was no available index of abundance within the MPA. We used the median of the absolute
value of relative error and the median relative error from 200 replicates/scenario to test SPM accuracy. In most cases,
spatially explicit SPMs performed better in both accuracy and bias than spatially aggregated SPMs. The accuracy
of the assessments also increased as MPA size increased except under the scenario of no index of abundance within
the MPA; for that scenario, accuracy increased as MPA size decreased. Monitoring of the stock within the MPA is
essential for conducting accurate stock assessments in areas with MPAs.

Marine protected areas (MPAs) have been increasingly used
and suggested as a fisheries management tool, often replacing
or used in combination with traditional management measures,
such as regulating the amount of harvest or fishing effort. Al-
though the term MPA can refer to a wide range of protection,
the most conservative type is a no-take MPA in which no har-
vest is allowed (Wenzel and D’Iorio 2011). One of the benefits
of using MPAs in fisheries management is that the underlying
theory is intuitive: when an area within a population’s range
is protected from fishing, that area should develop a greater
biomass of fish than the fished areas. Increased biomass within
the MPA should result in a “spillover effect” wherein biomass
shifts from the MPA to the fished area (Crowder et al. 2000;
Halpern and Warner 2002), thereby sustaining a fishery while
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conserving adult biomass. The spillover effect has been largely
thought of as a subsidy of larvae from the MPA to the fished
regions (e.g., Punt and Methot 2004). Adult movement could
create the same source–sink dynamics between the MPA and
fished areas, but many species that are managed by MPAs have
low movement rates as adults (e.g., Kaplan et al. 2009; for rea-
soning, see Hilborn et al. 2004). Other benefits of MPAs include
protection of habitat, refuge for populations that are at very low
abundances, and protection for species that are not targeted by
surrounding fisheries (Kelleher 1999).

Most of the research on MPAs has focused on population
dynamics, whereas much less work has considered the effects
of MPAs on the methods used to inform fisheries management.
Marine protected areas can have substantial negative effects on
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512 PINCIN AND WILBERG

the accuracy of stock assessment models that are used to provide
estimates of abundance and fishing mortality rate (F; Punt and
Methot 2004; Field et al. 2006). Stock assessments typically as-
sume that each individual within a given size-class or age-class
in a population is equally vulnerable, on average, to the fish-
ery. By design, MPAs change the vulnerability of a portion of
the population to fishing by protecting it from fishing pressure.
Thus, stock assessment techniques may not accurately portray a
population that has an MPA within its range and may result in bi-
ased estimates of F and available biomass (B; Field et al. 2006).

Some techniques have been developed to account for the
spatial changes an MPA makes in the distribution of fish. For
example, Punt and Methot (2004) investigated the ability of
spatially explicit and spatially aggregated statistical catch-at-
age (SCAA) stock assessments to estimate B and F of stocks
with spatial dynamics that included an MPA. Punt and Methot
(2004) found that spatially explicit SCAA assessments substan-
tially improved the accuracy of total B and F estimates relative
to spatially aggregated SCAA assessments. The characteristics
of the MPA and population also affect assessment model per-
formance, as larger MPAs, lower migration rates, and surveys
with lower observation error lead to more accurate estimates of
B (Punt and Methot 2004). Application of SCAA assessments
is often impractical or impossible for stocks with incomplete or
unavailable age data, but the performance of non-age-structured
assessments has not been tested in scenarios that include the
use of MPAs in management. Density ratios have also been
proposed as a method for managing data-poor fisheries in ar-
eas with MPAs (Babcock and MacCall 2011; McGilliard et al.
2011). Surplus production models (SPMs) constitute a com-
mon method of assessing stocks for which age-structured data
are either incomplete or impractical to obtain (Prager 1994).
Surplus production models require less data and have fewer es-
timated parameters than age-structured models (Laloë 1995).
Surplus production models include many aspects of population
dynamics in a simple model, and they produce estimates that are
easily translated into reference points commonly used to inform
management, such as maximum sustainable yield (MSY) or the
equilibrium B that would produce MSY (BMSY; Hilborn and
Walters 1992; Quinn and Deriso 1999; Jacobson et al. 2002).
Although age-structured methods are often preferred, SPMs are
still commonly used in assessing fish stocks, especially those in
tropical regions, where age-structured methods are impractical
due to difficulties with accurate fish age estimation (Pauly 1987).

The goal of our study was to compare the accuracy of
spatially aggregated and spatially explicit SPMs for assessing
stocks that are managed with MPAs. Specifically, the objec-
tive of this paper was to examine the accuracy of SPM esti-
mates when (1) part of the stock’s range includes an MPA and
(2) the spatial resolution of the available data is confined to one
region inside the MPA and one region outside of the MPA. We
used simulations to examine the effects of MPA size, migration
rate (z), level of observation error in the index of abundance,
and spatial aggregation of the data on estimates from spatially
explicit and spatially aggregated SPMs.

METHODS
We conducted numerical experiments in which we simu-

lated population dynamics and fishery data sets by using a data-
generating model, estimated abundance and F by using several
SPMs, and compared SPM estimates with true values to deter-
mine SPM accuracy. The population dynamics were based on
stylized fish stocks and followed a deterministic logistic growth
model. The data-generating model described the population dy-
namics for a range of MPA sizes and z-values and produced a
50-year time series of catch and indices of abundance. The as-
sessment models were spatially explicit or spatially aggregated
versions of SPMs and were fitted to the indices of abundance
by using a maximum likelihood approach. Each SPM was fitted
to 200 replicate data sets for each scenario that differed in their
random observation errors. All of the models were written in
AD Model Builder (Fournier et al. 2012).

Data-generating model.—Population dynamics were gener-
ated by use of a spatially explicit, discrete-time, logistic growth
model with two regions. One region became a no-take MPA in
year 20, and the other region remained open to fishing through-
out the simulation. The population was simulated for 50 years,
and the first year of the simulation was also the first year of
the targeted fishery. The population began at 90% of carry-
ing capacity (K) in year 1 to represent a population that was
lightly affected by a nontarget fishery prior to development of
the targeted fishery. Fishing mortality rapidly increased until the
population was largely depleted and an MPA was established
in year 20, at which point F either remained high or gradu-
ally decreased to the F that would achieve MSY (FMSY). These
patterns of F were used to avoid the well-known problem of
uninformative, “one-way-trip” data sets (Hilborn and Walters
1992).

The data-generating model calculated the true total B for
each year, the observed index of abundance (observation error
included), and the fishery catch in each region (CArea, where
Area = the MPA or the fished area). The data-generating
model followed a discrete-time Schaefer (1954) production
model with logistic growth, migration between two regions,
and fishing (Hannesson 1998; see Table 1 for definitions of the
variables):

BF (t + 1) = BF (t) + rBF (t)

[
1 − BF (t)

K(1 − m)

]

+ zm

[(
1 − m

m

)
BMPA(t) − BF (t)

]

− FF (t)BF (t)

and

BMPA(t + 1) = BMPA(t) + rBMPA(t)

[
1 − BMPA(t)

Km

]

+ z(1 − m)

[(
m

1 − m

)
BF (t) − BMPA(t)

]

− FMPA(t)BMPA(t).
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SURPLUS PRODUCTION MODEL ACCURACY 513

TABLE 1. Definitions of the symbols used in data-generating and assessment
models (MPA = marine protected area).

Symbol Definition

IRegion Index of biomass in one of the regions; subscript
F denotes the fished region, and subscript MPA
denotes the MPA region

ÎRegion Predicted index of biomass in one of the regions;
subscript F denotes the fished region, and
subscript MPA denotes the MPA region

r Intrinsic rate of increase (= 0.2 or 0.4)
K Carrying capacity of the entire population

(= 1,000 units)
m MPA size expressed as a proportion of the total

stock area
z Migration rate
σ SD of observation error
δ Normally distributed observation error
FArea Annual fishing mortality rate
qs Catchability of the survey ( = 0.005)
tmax Number of years in the simulation ( = 50)
C Total annual catch
B Biomass

Population parameters (K, z, MPA size expressed as a pro-
portion of the total stock area [m], and the intrinsic rate of in-
crease [r]) were constant across simulations within a scenario.
The value for K was a generic maximum total B (Table 1).
Migration rate, z, was defined as the probability that an indi-
vidual will move from one region to the other within a year
(Hannesson 1998). The z parameter represents a combination of
a fish’s propensity for movement and the size or arrangement
of an MPA or a complex of MPAs. For example, a low z may
represent a stock with moderate amounts of movement and a
single large MPA within its range, whereas a high z may rep-
resent a stock with a low rate of movement and a network of
small MPAs within its range. The equation is scaled so that if
the populations in both areas are equal in proportion to K, there
will be no net movement.

The index of biomass produced within the data-generating
model was the product of biomass (BArea), survey catchability
(qs), and a random lognormal observation error with a median
of zero and an SD determined by the scenario:

SArea(t) = BArea(t)qse
σδ(t).

The random observation errors changed in each replicate of
each scenario. Fishery catch in each region (CF or CMPA) was
calculated as the product of B and F for that area,

CArea(t) = BArea(t)FArea(t).

Our simulation experiment followed an incomplete factorial
design with four levels of MPA size, four levels of z, two pat-
terns of changing F over time, two levels of r, and two levels
of observation error for the index of biomass. The experiments
only considered one pattern of F for r = 0.4, but both pat-
terns of F for r = 0.2. The value of 0.4 for r is similar to
estimated maximum population growth rates for the barndoor
skate Dipturus laevis (Gedamke et al. 2009), South Atlantic al-
bacore Thunnus alalunga (Polacheck et al. 1993), and Namibian
hakes (cape hake Merluccius capensis and deepwater hake M.
paradoxus; Polacheck et al. 1993), but this level may be con-
sidered relatively high (Shepherd and Litvak 2004). Therefore,
we also included the lower level of r, which is similar to es-
timates for species such as the Atlantic cod Gadus morhua
(Hutchings 1999). The MPA sizes considered were 5, 10, 20,
and 40% of the total stock area. The two largest MPA sizes
were used for comparison with results from Punt and Methot
(2004). Marine protected areas in this range of sizes have also
been recommended or evaluated by several authors (Boersma
and Parrish 1999; Crowder et al. 2000; Jones 2001). The two
smaller MPA sizes were included to represent the more com-
mon MPA sizes implemented in current fisheries (NOAA 2010).
To simulate different types of populations and MPA configura-
tions, we considered four levels of z: 0.2, 0.3, 0.4, and 0.5 per
year.

The two F patterns were the same before implementation of
the MPA (i.e., year 20; Figure 1). In the first F scenario, the F
decreased to FMSY in the non-MPA region after implementation
of the MPA. In the alternative F scenario, effort that had taken
place within the MPA prior to simulation year 20 was displaced
to the region that was open to fishing. Redistribution of fishing
effort when an MPA is implemented may more accurately de-
scribe actual fishing behavior in relation to MPAs (Rijnsdorp
et al. 2001; Dinmore et al. 2003). Fishing mortality in the r =
0.4 scenario followed the same pattern as that in the r = 0.2
scenario but was doubled in magnitude to create approximately
the same decline in B and to reflect the different level of FMSY

for a faster-growing population. We included two levels of ob-
servation error, low (log-scale SD = 0.2) and high (log-scale
SD = 1.0), to represent good and poor indices of biomass,
respectively. The assumed log-scale SD was the same for the
indices of abundance used in the spatially aggregated estimation
models and those used in the spatially explicit models. For each
level of r and each pattern of fishing effort, we also simulated a
set of scenarios in which there was no available index of biomass
within the MPA; this was used to model a situation in which
(1) only fishery-dependent data were available or (2) monitor-
ing was not conducted within the MPA.

Estimation models.—Data sets were fitted with spatially ex-
plicit and spatially aggregated SPMs. Spatially explicit SPMs
had the same form as the data-generating model except that
observed C was subtracted in each year. The dynamics of the
spatially aggregated model followed a simple Schaefer SPM
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514 PINCIN AND WILBERG

FIGURE 1. Pattern of annual fishing mortality (F) in the fished region over
time for scenarios in which (A) the intrinsic rate of increase (r) equals 0.2 and
F was reduced to the level that supports maximum sustainable yield (FMSY)
after implementation of the marine protected area (MPA), (B) r equals 0.4 and
F was reduced to FMSY after MPA implementation, and (C) r equals 0.2 and
fishing effort originally occurring in the MPA region was redistributed to the
non-MPA region after MPA implementation. In the FMSY scenarios, the fishing
effort applies to all MPA sizes (MPA = 5–40% of the total stock area). After
the first 20 years, F in the MPA was zero.

(Hilborn and Walters 1992),

B(t + 1) = B(t) + rB(t)

[
1 − B(t)

K

]
− C(t).

The estimated parameters of the model were z (in the spatially
explicit models), K, r, the initial B as a proportion of K, and
qs. Estimation models were given the correct parameter values
as starting values for the estimation to avoid potential problems
caused by poor starting values. Although analysts in the field
would not have the correct values, the models were relatively
insensitive to starting values; we ran a subset of the estimation
models for which the starting values were changed by 10%, but
the results were not different. The parameters were estimated
by minimizing the concentrated negative log-likelihood (−LL)
functions. For the spatially explicit scenarios, the concentrated
−LL function assumed lognormal observation errors for the
indices of biomass within the MPA (IMPA) and outside of the
MPA (IF),

−LL = tmax log10

{∑
[log10(ÎF ) − log10(IF )]2

+
∑

[log10(ÎMPA) − log10(IMPA)]2

}
.

For the spatially aggregated SPMs, the concentrated −LL
function assumed lognormal observation errors about a spatially
aggregated I or only an I from outside of the MPA,

−LL = 0.5tmax log10

{∑
[log10(Î ) − log10(I )]2

}
.

The effect of time (years) since the MPA was implemented
on the accuracy of the results was considered by conducting
a subset of simulations with 25-, 30-, and 40-year time series.
Effects of the shorter time series were only evaluated in the
scenarios with low r.

Assessment evaluation.—We evaluated the accuracy of SPMs
by calculating the percent relative error of estimated B (Berror)
in the last simulation year from the 200 simulated data sets for
each estimation model,

Berror =
(

Bpred − Btrue

Btrue

)
× 100,

where Btrue is the actual B of the population and Bpred is the
predicted B from the SPM.

We summarized the bias and accuracy of the models by us-
ing the median of the relative error (MRE) or the median of
the absolute value of relative error (MARE) for each assess-
ment model under each MPA size, z, fishing effort scenario,
level of survey error SD, pattern of fishing effort, and level of
r. We used the median instead of the mean because medians
are not as susceptible to the influence of large outliers, which
were present in the results. We compared true and estimated
values of B in the last year of the simulation (30 years after the
establishment of the MPA) to indicate overall accuracy of the
model for most of the evaluations. We also used the accuracy
of parameter estimates—specifically r, K, qs, and initial B—as
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SURPLUS PRODUCTION MODEL ACCURACY 515

indicators of overall model performance because they are used
to calculate biological reference points (e.g., MSY) and to in-
form management decisions.

RESULTS

Population Trends
The populations in all of the scenarios began at 90% of K

and then declined rapidly for 20 years until they reached ap-
proximately 10–20% of K (Figure 2). In the scenarios with low
r and decreased fishing effort, after the MPA was established in
year 20 the populations slowly increased for 25–27 years until
reaching equilibrium B. Equilibrium B varied among MPA sizes.
When only 5% of the total stock area was included in the MPA
(m = 0.05), the populations recovered to about 46.5% of K.

When the MPA included 40% of the total stock area (m = 0.4),
the populations recovered to around 68.6% of K. Differences in
z affected the final equilibrium B by less than 1% of K. In the
scenarios with a high r and decreased fishing effort, the popu-
lation increased until it reached equilibrium after the MPA was
implemented, but equilibrium B levels were slightly higher than
those in the lower-r scenarios. When only 5% of the total area
was included in the MPA, the populations recovered to about
51.7% of K (Figure 2). When the MPA included 40% of the
total area, the populations recovered to around 71.9% of K. Dif-
ferences in z affected the final equilibrium B by approximately
0.5%.

The dynamics were very different in the scenarios with a
low r and redistributed fishing effort (Figure 2). In most cases,
the population continued to decline after implementation of the

FIGURE 2. Biomass (units) in the marine protected area (MPA) region (black shading) and non-MPA region (gray shading) for each scenario defined by MPA
size (MPA = 5–40% of the total stock area), migration rate (z), intrinsic rate of increase (r), and fishing mortality (F) pattern (F patterns are defined in Figure 1).
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516 PINCIN AND WILBERG

MPA, although at a slower pace than before MPA implemen-
tation, and the population reached 3.4–14.2% of K by the final
year of the simulation. Only when the MPA was 40% of the
total area and z was lower than 0.5 did the population increase
after MPA implementation, reaching 17.5% of K when z was
0.4 and 28.2% of K when z was 0.2. Migration rates affected
the final B to a greater degree in the redistributed fishing effort
scenario because of the greater disparity in mortality between
the two regions.

Accuracy of Surplus Production Models
The accuracy of estimates of B in the last year of the simula-

tions differed substantially between SPMs and among scenarios.
The spatially explicit models were the most accurate in most of
the scenarios, but occasionally the spatially aggregated models
were more accurate or less biased. The MAREs of the spa-
tially aggregated models ranged from 82.2% to 717% of the
corresponding spatially explicit models (Table 2), but on aver-
age the MAREs of the spatially aggregated models were 45%
higher than those of the spatially explicit models. The MREs
of the spatially aggregated models showed more bias than the
spatially explicit models in 54% of the scenarios, and the major-
ity of these were scenarios involving low observation error. The
spatially explicit models tended to be negatively biased, whereas
the spatially aggregated models were usually positively biased.
For models in which no survey data were available from within
the MPA, the MARE was 1.0–35.5 times higher than those of
other models and the differences increased as MPA size in-
creased (Figure 3). In addition, estimates of B from the models
with no MPA survey data showed substantial negative bias.

For scenarios with a low value of r and decreased fishing
effort, the spatially explicit and spatially aggregated SPMs did
not differ substantially in the MARE of B for the last year of
the simulation, as MARE ranged from 1.4% to 5.2%; however,
the spatially explicit SPMs did have 15% lower MAREs on
average (Figure 3). The models had substantially higher errors
(MARE = 10.3–25.1%) in the high-observation-error scenar-
ios than in the low-observation-error scenarios, as may be ex-
pected. In the high-observation-error scenarios, the MAREs of
the spatially explicit models were 10% lower than those of the
spatially aggregated models on average. The scenarios with a
high value of r and a low observation error showed that the
spatially aggregated SPMs had MAREs that were 1.4–7.2 times
larger than those of the spatially explicit assessments (spatially
aggregated SPMs: MARE range = 2.5–8.8%; spatially explicit
SPMs: MARE range = 1.1–3.3%). In the scenarios with the
higher level of observation error, the spatially explicit and spa-
tially aggregated SPMs had similar performance, with the most
accurate model differing among scenarios.

The SPMs were less accurate in the scenarios with a low
value of r and redistributed fishing effort than in the scenar-
ios with decreased fishing effort. The MARE range of the spa-
tially explicit models with low observation error was 4.5–12.7%,
while the spatially aggregated SPMs had a MARE of 9.6–19.7%

(Table 2). There was a greater disparity between the MAREs
of the spatially explicit and spatially aggregated SPMs in the
redistributed fishing effort scenarios; MAREs of the spatially
aggregated SPMs were on average 1.5 times the MAREs of spa-
tially explicit SPMs. The SPMs with no MPA survey data were
also less accurate in the redistributed fishing effort scenarios,
with MAREs that were 1.6–5.0 times larger than those for the
decreased fishing effort SPMs.

The accuracy and bias of estimated B depended on MPA size
and, to a lesser extent, z (Figure 3). In most of the spatially ex-
plicit SPMs, the accuracy increased with increasing MPA size
regardless of r, observation error, or pattern of fishing effort.
Bias did not change with MPA size or z in the spatially ex-
plicit SPMs. The same trend was seen in most scenarios for the
spatially aggregated SPMs. For the spatially aggregated models
with no information from the MPA, however, error increased
with increasing MPA size in all scenarios and the estimates of
B were highly negatively biased. For the spatially aggregated
SPMs, accuracy and bias improved with increasing z. Migration
rate did not affect accuracy in the spatially explicit SPMs with
decreased fishing effort; however, in the redistributed fishing ef-
fort scenarios, error increased with increasing z. Migration rate
was an important factor in accuracy of the spatially aggregated
SPMs, for which higher levels of z usually produced lower er-
rors in models with survey data from the MPA and in models
without MPA data. However, in all of these cases, MPA size had
a more pronounced effect on accuracy than did z.

Patterns in the accuracy of parameter estimates were different
than those for B in the last simulation year (Figure 4). In general,
the spatially explicit SPMs produced more accurate estimates of
r, K, qs, and initial B than the spatially aggregated SPMs. The
MARE for the initial B parameter estimate was up to 40% lower
in the spatially explicit SPMs than in the spatially aggregated
SPMs. The other parameters were estimated with approximately
the same degree of accuracy in both types of SPM. However,
trends in parameter estimates across MPA sizes did not coin-
cide with those seen in the B estimates. The spatially explicit
SPMs tended to produce somewhat less-accurate estimates with
increasing MPA sizes (0–10% higher MARE for m = 0.4 than
for m = 0.05), while the spatially aggregated assessments often
produced more accurate estimates with increasing MPA sizes
(10–50% lower MARE for m = 0.4 than for m = 0.05). The er-
rors of estimates for r, K, qs, and initial B from the models with
no MPA survey data were consistently higher than the errors in
parameter estimates from other models.

The general pattern of relative error in B in the assessment
models changed depending on how many years of data were
available after the MPA was established (Figures 5, 6). In all
cases, the range of relative errors was narrower with 20 or
30 years of data as opposed to 5 years of data after MPA imple-
mentation. In the scenarios with an r-value of 0.2 and decreased
fishing effort, this reflected an increase in the range of relative
error by 300–650% in models with 5 years of post-MPA data
(Figure 5). The same pattern was observed in the scenarios with
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SURPLUS PRODUCTION MODEL ACCURACY 517

TABLE 2. Median of the absolute value of relative error (MARE) and median of the relative error (MRE) for each assessment model (i.e., spatially explicit
surplus production model [SPM], spatially aggregated SPM, and assessments without survey data from the marine protected area [MPA]) under each scenario
defined by migration rate (z), MPA size (percentage of the total stock area), observation error, intrinsic rate of increase (r), and fishing effort scenario (decreased
or redistributed effort). For each scenario, the MARE and MRE closest to zero are italicized; the MARE and MRE with the largest absolute values are in bold.

Spatially explicit Spatially aggregated No information
SPM SPM from MPA

Log-scale MPA

observation error SD z size (%) MRE MARE MRE MARE MRE MARE

Decreased fishing effort, r = 0.2
0.2 0.2 5 0.3 4.7 −0.4 5.1 −9.6 9.9
0.2 0.2 10 0.2 4.2 0.8 4.7 −18.0 18.0
0.2 0.2 20 0.3 3.0 2.4 3.6 −30.7 30.6
0.2 0.2 40 0.3 1.4 3.7 3.8 −51.2 51.2
0.2 0.3 5 0.1 4.8 −0.9 5.1 −8.9 9.5
0.2 0.3 10 0.1 4.3 0.0 4.4 −16.9 16.9
0.2 0.3 20 0.3 3.1 1.2 3.3 −29.1 29.1
0.2 0.3 40 0.4 1.6 2.4 2.7 −49.3 49.3
0.2 0.4 5 0.04 4.8 −1.1 5.2 −8.5 9.1
0.2 0.4 10 0.1 4.2 −0.3 4.3 −16.2 16.2
0.2 0.4 20 0.3 3.2 0.6 3.5 −28.1 28.1
0.2 0.4 40 0.5 1.7 1.7 2.2 −48.2 48.2
0.2 0.5 5 −0.03 4.9 −1.1 5.2 −8.2 8.8
0.2 0.5 10 −0.1 4.2 −0.5 4.5 −15.7 15.7
0.2 0.5 20 0.3 3.2 0.4 3.7 −27.4 27.4
0.2 0.5 40 0.5 1.8 1.4 1.9 −47.5 47.5
1 0.2 5 −4.0 22.5 −6.8 25.0 −21.8 33.6
1 0.2 10 −3.4 19.0 −2.9 21.7 −31.4 34.7
1 0.2 20 −5.5 13.1 0.7 17.1 −46.5 46.5
1 0.2 40 −6.2 11.5 −1.0 10.3 −63.8 63.8
1 0.3 5 −4.8 23.4 −9.4 25.0 −21.4 34.0
1 0.3 10 −5.3 19.4 −4.6 22.4 −30.8 34.0
1 0.3 20 −5.3 14.1 −0.7 17.9 −45.4 45.4
1 0.3 40 −5.7 10.6 −2.2 11.1 −62.5 62.5
1 0.4 5 −6.7 23.8 −10.2 25.1 −21.1 34.1
1 0.4 10 −6.3 19.7 −6.8 22.3 −30.4 33.2
1 0.4 20 −5.1 14.9 −1.9 18.2 −44.7 45.3
1 0.4 40 −5.3 10.4 −2.5 10.7 −63.2 63.2
1 0.5 5 −7.3 23.5 −10.4 25.0 −20.9 33.9
1 0.5 10 −7.2 20.6 −7.7 22.6 −30.1 33.5
1 0.5 20 −5.1 15.3 −2.6 18.4 −43.4 44.2
1 0.5 40 −5.6 10.7 −2.7 11.1 −61.2 61.2

Decreased fishing effort, r = 0.4
0.2 0.2 5 −0.7 3.2 1.5 4.6 −6.8 7.7
0.2 0.2 10 −0.4 2.6 4.2 4.6 −11.8 11.8
0.2 0.2 20 −0.3 1.7 7.9 7.9 −19.4 19.4
0.2 0.2 40 −0.2 1.2 8.8 8.8 −36.8 36.8
0.2 0.3 5 −0.7 2.5 0.4 4.1 −6.7 7.6
0.2 0.3 10 −0.4 3.1 2.3 3.6 −11.6 11.6
0.2 0.3 20 −0.4 2.1 5.0 5.0 −19.2 19.2
0.2 0.3 40 −0.2 1.3 5.8 5.8 −35.9 35.9
0.2 0.4 5 −0.7 1.9 1.3 4.27 −6.6 7.5
0.2 0.4 10 −0.3 3.3 3.4 3.37 −11.5 11.5
0.2 0.4 20 −0.3 2.0 4.2 3.40 −19.1 19.1
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TABLE 2. Continued.

Spatially explicit Spatially aggregated No information
SPM SPM from MPA

Log-scale MPA

observation error SD z size (%) MRE MARE MRE MARE MRE MARE

0.2 0.4 40 −0.2 1.2 −0.2 4.20 −32.3 32.3
0.2 0.5 5 −0.7 1.6 −0.5 4.22 −6.5 7.5
0.2 0.5 10 −0.6 3.3 0.7 3.21 −11.4 11.4
0.2 0.5 20 −0.2 2.0 2.4 2.49 −18.9 18.9
0.2 0.5 40 −0.1 1.2 3.2 3.19 −30.1 30.1
1 0.2 5 −8.2 16.6 3.8 17.30 −21.7 25.0
1 0.2 10 −7.5 12.6 5.6 14.53 −29.8 29.8
1 0.2 20 −7.8 10.3 6.1 9.94 −34.2 34.2
1 0.2 40 −5.4 8.3 6.8 9.62 −25.7 25.7
1 0.3 5 −8.8 16.7 1.1 17.46 −21.2 24.6
1 0.3 10 −8.0 13.0 2.5 13.50 −29.3 29.3
1 0.3 20 −7.4 10.4 2.7 8.64 −38.7 38.7
1 0.3 40 −5.5 7.3 3.6 7.34 −34.2 34.2
1 0.4 5 −8.6 16.3 0.2 16.95 −20.8 24.2
1 0.4 10 −7.7 12.6 1.5 12.76 −30.1 30.1
1 0.4 20 −7.4 9.7 1.1 8.09 −42.1 42.1
1 0.4 40 −5.2 7.2 2.0 6.32 −35.9 35.9
1 0.5 5 −9.6 16.7 −0.4 16.86 −20.7 24.6
1 0.5 10 −8.0 12.7 0.2 12.64 −28.5 28.5
1 0.5 20 −7.1 9.5 0.2 7.77 −40.6 40.6
1 0.5 40 −5.2 7.1 0.8 5.93 −37.5 37.5

Redistributed fishing effort, r = 0.2
0.2 0.2 5 −2.1 9.0 4.2 12.1 −48.9 48.9
0.2 0.2 10 −0.8 7.7 8.6 12.3 −61.5 61.5
0.2 0.2 20 −0.9 7.0 13.6 14.1 −71.2 71.2
0.2 0.2 40 −0.3 4.5 19.7 19.7 −82.9 82.9
0.2 0.3 5 −3.8 9.8 −0.8 13.7 −41.3 41.3
0.2 0.3 10 −2.4 9.2 1.3 12.0 −54.9 54.9
0.2 0.3 20 −1.9 8.4 4.2 10.4 −65.4 65.4
0.2 0.3 40 −0.7 6.1 8.4 10.5 −78.9 78.9
0.2 0.4 5 −4.6 11.8 −3.6 15.3 −36.4 36.4
0.2 0.4 10 −3.5 10.8 −1.3 13.8 −50.3 50.3
0.2 0.4 20 −3.2 9.4 0.9 11.4 −61.0 61.0
0.2 0.4 40 −1.1 7.3 3.6 9.8 −75.8 75.8
0.2 0.5 5 −4.7 12.7 −4.3 16.2 −33.7 34.2
0.2 0.5 10 −3.8 11.7 −3.0 14.5 −47.1 47.1
0.2 0.5 20 −3.2 10.7 −0.6 11.9 −58.2 58.2
0.2 0.5 40 −1.8 8.6 1.0 9.6 −72.7 72.7
1 0.2 5 −3.1 41.4 28.7 55.9 −47.8 57.7
1 0.2 10 −3.3 37.8 25.7 57.4 −62.5 64.7
1 0.2 20 −3.1 33.3 21.4 46.0 −72.9 72.9
1 0.2 40 −5.5 22.1 8.9 42.0 −82.3 82.3
1 0.3 5 −0.7 45.8 10.3 55.9 −40.7 55.6
1 0.3 10 −5.9 42.3 14.3 54.9 −54.3 58.6
1 0.3 20 −4.1 39.8 10.3 49.3 −68.8 69.1
1 0.3 40 −4.0 30.1 0.2 46.2 −80.5 80.5
1 0.4 5 −5.1 48.9 −0.1 54.6 −37.8 55.7
1 0.4 10 −5.2 46.7 8.2 53.0 −50.1 56.9
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TABLE 2. Continued.

Spatially explicit Spatially aggregated No information
SPM SPM from MPA

Log-scale MPA

observation error SD z size (%) MRE MARE MRE MARE MRE MARE

1 0.4 20 −7.7 45.8 5.8 51.6 −63.7 64.3
1 0.4 40 −3.5 35.5 −3.1 48.2 −77.4 77.4
1 0.5 5 −4.8 53.8 −2.4 51.2 −37.4 56.2
1 0.5 10 −7.0 49.0 5.7 51.6 −47.2 57.2
1 0.5 20 −6.9 48.0 5.4 53.8 −61.1 61.8
1 0.5 40 −2.8 41.3 −5.4 51.3 −76.4 76.4

redistributed fishing effort (Figure 6), but the ranges of relative
error were only widened by 140–260%. The ranges of relative
error under the redistributed fishing effort scenarios were al-
most always wider (i.e., less precise) than the ranges under the
scenarios with decreased fishing effort. In addition, the ranges
of relative error were 150–300% narrower from the smallest
MPA size to the largest MPA size in all cases, regardless of
fishing effort pattern. The spatially explicit and spatially aggre-
gated SPMs showed the same pattern of error, but the spatially
aggregated estimation models were usually more biased than
the spatially explicit models. The spatially explicit SPMs also
resulted in improved accuracy for all scenarios, with the greatest
differences observed in the early years and at lower MPA sizes.
In most cases, the bias decreased as more years of data were
included in the analysis.

DISCUSSION
Marine protected areas can significantly affect the accuracy

of stock assessment results, and information collected from
within the MPA is essential for accurate assessment of a popula-
tion. While spatially explicit SPMs provided the most accurate
estimates of B across all of the scenarios we considered, they
may not be feasible for application to many stocks because they
require an index of abundance within the MPA. In the absence of
abundance index data for the MPA, the SPMs tended to underes-
timate B and K and to overestimate r, qs, and initial B. The largest
bias occurred with the largest MPA sizes, although this was ex-
pected because the assumptions of the assessment are violated
to a lesser degree with a small MPA than with a larger MPA.
Unfortunately, most MPAs do not appear to have the necessary
data collection programs to provide indices of abundance. Only
29% of MPAs have sufficient information available to evaluate
progress against their management objectives (Jones 2001), and
the inability to collect data from MPAs has been identified as a
problem with the management strategy (Field et al. 2006). Our
study supports suggestions that the monitoring of populations
within an MPA is crucial in addition to regulating the fishery
outside of the MPA (e.g., Pomeroy et al. 2005).

Larger MPAs almost always produced a more accurate stock
assessment when information was available for the full range of
the stock. Punt and Methot (2004) reported similar results for
SCAA assessments. Some authors have suggested that for an
MPA to be an effective conservation measure, it must occupy at
least 20% and up to 40% of a population’s habitat (Boersma and
Parrish 1999; Jones 2001). However, most actual MPAs occupy
a much lower percentage of the total habitat, and less than 1%
of marine resources are considered to be fully protected from
fishing (Boersma and Parrish 1999). Most modeling studies have
focused on large MPAs that occupy 20–70% of the population’s
range (e.g., Sumaila 2002; Punt and Methot 2004), although
some have explored the effects of smaller reserves (10–15% of
the range; e.g., Watson et al. 2000). Specifically, these studies
have focused on the recommendations that emphasize large,
“no-take” reserves (e.g., Pauly et al. 1998), which differ from
other forms of MPA that vary widely in the level of protection
afforded to them. Our results suggest that if these large MPAs
are implemented in the future, spatially explicit assessments will
be important tools for evaluating their effectiveness.

Migration rates can also affect the accuracy of stock assess-
ments when an MPA is part of the management for a fishery.
Punt and Methot (2004) found a decrease in accuracy of stock
assessments with increasing migration rates. In our study, ac-
curacy was less affected by z than by MPA size, and the effect
of z depended on MPA size, pattern of fishing effort, and the
presence of a survey within the MPA. In the scenarios with low
r and decreased fishing effort, z had a negligible effect on accu-
racy of B estimates. In the scenarios with higher r, increased z
resulted in increased accuracy of the assessment—a pattern op-
posite that reported for age-structured methods (Punt and Methot
2004). However, the redistributed fishing effort scenarios caused
higher errors with increasing z in the spatially explicit SPMs,
coinciding with the results of Punt and Methot (2004). The
difference between fishing effort scenarios probably occurred
because increased movement violates the assumption that the
population is distributed homogeneously in the assessed area
(Punt and Methot 2004), and the disparity in population density
between the two areas was greater in the redistributed fishing
effort scenarios than in the decreased fishing effort scenarios.
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520 PINCIN AND WILBERG

FIGURE 3. Median absolute value of relative error (MARE) of estimated biomass in simulation year 50 for the spatially explicit surplus production model
(Explicit), the spatially aggregated model (Aggregate), and the model in which no survey data were available from the marine protected area (MPA; No Survey)
under scenarios with a low or high observation error (s = 0.2 or 1.0), a low or high intrinsic rate of increase (r = 0.2 or 0.4), and a pattern of decreased or
redistributed fishing effort. Migration rate is 0.3 for all scenarios shown; MPA size is 5–40% of the total stock area.

Spatially aggregated models did not perform much worse
than the spatially explicit models in most of the scenarios tested.
Logistic SPMs tend to be fairly robust to violations of assump-
tions (Prager 2002); therefore, especially at the smaller MPA
sizes for which the spatial assumptions of SPMs are violated
to a lesser degree, spatially explicit SPMs are not necessarily
an improvement over traditional spatially aggregated models. In

addition, Ludwig and Walters (1985) emphasized the necessity
of not overtaxing the available data to fit into a more com-
plex model; this observation suggests that especially in cases
where the z or the proportion of K protected by the MPA is un-
known, spatially aggregated SPMs may be a rational assessment
approach because spatially explicit methods would require ad-
ditional assumptions to be made. However, the spatially explicit
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SURPLUS PRODUCTION MODEL ACCURACY 521

FIGURE 4. Median absolute value of relative error (MARE) of the parameter estimates from the spatially explicit surplus production model (Explicit), the
spatially aggregated model (Aggregate), and the model in which no survey data were available from the marine protected area (MPA; No Survey) under scenarios
with low observation error (s = 0.2), an intrinsic rate of increase (r) equal to 0.2, decreased fishing effort, and a migration rate equal to 0.3. The MPA size is 5–40%
of the total stock area.

SPMs did perform better than the spatially aggregated SPMs in
most of the scenarios we considered, so the spatially explicit
models should be the first choice for any assessment. The spa-
tially explicit SPMs did not have greatly increased complexity
relative to the traditional spatially aggregated SPMs, but the ac-
curacy of estimated B was better, especially for the scenarios in
which the overall fishing effort remained high.

The precision of B estimates was highly dependent on the
number of years of data that were available from both regions.
When more years of data were available, the ranges of the rel-
ative error of estimated B were smaller, and in most cases the
bias improved as well. The greatest precision was achieved when
data were available for the 20 or 30 years after the MPA was in-
stituted, suggesting that some time is necessary for SPMs to pro-
duce accurate estimates of B. Consistent, accurate surveys from
both the fished region and the MPA were key factors in produc-
ing the accurate estimates observed at the end of the time series.
Our results and those from Punt and Methot (2004) describe
a single large MPA, but extrapolation to a network of smaller
MPAs is possible (Field et al. 2006). This is important because
of the “single large or several small” debate among ecologists

(McNeill and Fairweather 1993; Roberts and Hawkins 1997;
Walters 2000). Because MPA size in the data-generating and
estimation models in our study was defined as the proportion
of total stock area that was protected by the MPA, the results
may be interpreted as the effects of several different kinds of
MPA on the accuracy of an SPM. For example, a scenario that
involves a large MPA could have the same proportion of K
protected as a series of smaller MPAs, but the z would be higher
for a network of smaller MPAs. However, our study assumed
a closed population, so the results are not applicable to a sub-
population with extensive migration from outside the modeled
area.

The pattern of F after MPA implementation had a substantial
effect on the relative performance of SPMs. Spatially explicit
and spatially aggregated SPMs produced similar estimates un-
der the decreased fishing effort scenario when an index of abun-
dance within the MPA was available. However, the presence of
an MPA had a negative effect on the accuracy of spatially ag-
gregated SPM stock assessments in scenarios with redistributed
fishing effort. The redistributed effort scenario may be more
realistic because total fishing effort remains approximately the
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522 PINCIN AND WILBERG

FIGURE 5. Box plots of the relative percent error in total biomass from scenarios of decreased fishing effort, an intrinsic rate of increase equal to 0.2, a migration
rate of 0.3, and low observation error (s = 0.2) for both spatially explicit and spatially aggregated assessment models through time (MPA = marine protected area;
MPA size = 5–40% of the total stock area). The dark line within each box is the median, ends of the box represent the interquartile range, and ends of whiskers
indicate the 2.5th and 97.5th percentiles.

same when an MPA is implemented unless the MPA coincides
with effort controls (Rijnsdorp et al. 2001; Dinmore et al. 2003).
Thus, the spatially explicit SPM may produce more accurate es-
timates in practice even though the spatially aggregated and
spatially explicit SPMs performed similarly in many of the
scenarios.

The accuracy of the estimates depends largely on the ac-
curacy of abundance indices. Scenarios with more observation
error in the indices of abundance had greater ranges of overall
error but were not more biased than scenarios with less obser-

vation error. Our comparisons assumed that the SDs of errors
were the same both inside and outside of the MPA and for the
spatially aggregated indices. In some situations, this may be
unrealistic if sampling effort is proportional to the area of each
region. We conducted an additional set of simulations for the
scenario of an MPA size equal to 5%; in these simulations, the
log-scale SD was 0.2 for the fished area and 1.0 for the MPA.
The results of these simulations still did not affect bias but did
affect accuracy, as the range of error was greater than when the
log-scale SD was 0.2 for both areas. As we would expect, the
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FIGURE 6. Box plots showing the relative percent error in total biomass from scenarios of redistributed fishing effort, an intrinsic rate of increase equal to
0.2, a migration rate of 0.3, and low observation error (s = 0.2) for both spatially explicit and spatially aggregated surplus production models through time
(MPA = marine protected area; MPA size = 5–40% of the total stock area). Box plot elements are defined in Figure 5.

difference in results decreased as MPA size increased because
the difference in region size was smaller.

Use of MPA management could improve stock assessment
accuracy if many of the recommendations of past studies were
implemented. Positive effects of MPAs on fish stocks are highly
dependent on variables other than MPA size, such as the
characteristics of the area, the behavior and life history traits
of the fish (Holland 2002), and the success of management in
actually protecting the area. Larger MPAs have a greater pos-
itive effect on fish populations than smaller MPAs provided

that the protected regions are of similar quality (Pelletier and
Magal 1996; Nowlis and Roberts 1999). However, an MPA with
higher-quality habitat can lead to better results than a larger but
low-quality MPA (Lundberg and Jonzén 1999; Rodwell et al.
2003) because higher-quality areas can support greater densi-
ties of fish. Despite the potential benefits of MPAs, few MPAs
with sufficiently good management have been demonstrated
as generating substantial improvement in the biomass of fish
they were established to protect (Kelleher 1996; Hilborn et al.
2004).
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Alternative approaches to management of data-poor species
with MPAs within their ranges have been developed. The ratio of
density within an MPA to density outside of the MPA has been
suggested as a metric that can be used directly in a control rule to
manage fishing effort (Babcock and MacCall 2011; McGilliard
et al. 2011). This approach uses density within the MPA as
a proxy for unfished density, and it performs comparably to
control rules that rely on more-data-rich assessment approaches
(Babcock and MacCall 2011; McGilliard et al. 2011). Our study
is not directly comparable with those of McGilliard et al. (2011)
and Babcock and MacCall (2011) because we did not perform
a management strategy evaluation; however, the density ratio
does appear to be an important source of information for spa-
tially explicit SPMs. In particular, SPMs were more accurate
in scenarios with large MPAs and low z than in scenarios with
small MPAs and high z when fishing effort was redistributed.

Our study likely represents a best-case scenario for the per-
formance of SPMs, especially between spatially explicit and
spatially aggregated models. However, we believe that it pro-
vides a useful comparison of the relative performance of SPMs
for stocks that have MPAs within their ranges. In most cases, the
assessment model was exactly the same as the data-generating
model. If we had used a stochastic age-structured model as
the data-generating model, performance of the SPMs probably
would have been substantially poorer, as has been observed in
other studies (NRC 1998; Punt et al. 2002). Our simulations
also assumed no error in the catch, and the spatially explicit
SPMs assumed that MPA size was known. The area of an MPA
is likely to be known, but the spatially explicit SPM requires an
assumption about the proportion of K within the MPA, which
may differ from the spatial extent of the MPA because limiting
resources for the population might not be evenly distributed.
Other requirements for accurate SPM estimates in this study
were an informative F scenario and indices that were actually
proportional to population size. The results may be less accurate
if the F time series is not as informative as the ones we tested
or if qs changes over time.

In conclusion, the accuracy of estimates from SPM stock
assessments, like those from age-structured assessments, can
be substantially affected by inclusion of an MPA within the
stock’s range. However, substantial improvements in accuracy
can be made by collecting data for indices of abundance within
the MPA and by using a spatially explicit assessment model.
A substantial period of time was necessary for estimates of
B to become unbiased after MPA implementation. However,
the SPMs evaluated here performed well under a broad range
of circumstances and could be useful in assessing stocks with
ranges that include MPAs.
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